Wests or with no # Designing of aseptic area: Aseptic area is the well defined area where the production of sterile preparation should be carried out and the entry at these area is Strictly through the airclock for personnel and yor for equipment and material The various operations of sterile preparation, filteration, filling, sterile sterilization is carried out under Ocontrolled condition designed to control the presence of any Microbial cell or any air particles. During designing of aseptic area focus air quality control to maintain & to make aseptic area environment acceptably clean. · The aseptic area is divided in main 4 Grades as per the operations performed inside the area. -> Greade A : This zone performed high Tisk operations, eg=> aseptic tilling & toanster. -> Greade B: Background area of Greade A processes (aseptic preparation & towng → Grade C: Preparation of sterile sol7 to be filter -> Greade D: Handling of components after washing. * following factores are considered in designing of any aseptic area. - All aseptic area should as jar as possible to avoid the entry of unrelated personnel's. - · In all aseptic areas, all exposed surfaces, walls, roofs should be smooth, unbroken, tree tron any cracks to of Omicrobial cells. - Doors should be carefully designed to avoid any air contartination. sliding doors are not allowed too aseptic of area. swing doors should be open in the flow direction of air or from positive air pressure side to negative our pressure side. - · Pipes and ducts or othing other things ... should be installed in such a way that they do not create unsealed opening & surfaces that pre difficult to clean. www.remixeducation.in changing rooms should be designed as Air locked doors should not be open at same time in double door, when is open, the second door should be close. An warning alasm system should be there I to warn in the condition of both doors are open. LAYOUT OF ASEPTIC AREA Laninar flow Cabinet or Tissue culture hood www.remixeducation.in | -> Different sources of co- | ntamination in an | |------------------------------------|-------------------------| | as pric area? | | | 1) personnel/operator (| - Manual and traction a | | (2) Building | Process O | | (3) Equipments & | HVAC | | (4) Raw Materials | [reating , ventilation | | y raw muterials | & Air - Conditioni- | | -> Personnel: | -ng] system. | | = | | | · Person = Supervising, per | Forwing & contalling | | doug Manufactu | sing Vis reason | | to tousing | contamination due | | - Inadequate training | 0 (80308) | | - Eating / drinking / SM | ooking. | | 01 | | | (2)→ Building | | | = () | 0.001 | | · Rough 71000, walls, cei | lings of | | | | | · Absence of air filter | ation system | | · Improper washing, cle | aning - toilet & | | · Improper washing, cle | personal | | | clean liness. | | -> Equipments & utensils | | | | - ') - ! - | | · Improper cleaning & 5 | anitation of | | Egicipments. using dejective equi | 9 0 0 1- | | using dejective egu | ucation.in | | | | | -> Para Natexials | |--| | -> Raw Materials | | · degradation of saw material due to extreme environmental condition | | · wrong labelling | | · Improper storage & handling | | · Incorrect sampling & testing. | | -> Manufacturing process ? | | · Juproper sterilization. | | · lack of labelling, cleaning. | | -> HVAC : | | · Improper Air filteration system. | | · Non- Maintenance of pressure in the | | | | * Method of Prevention of contamination | |--| | | | 1) Personnel | | personal busine | | · personal hygine maintained
· unauthorised personnel restricted. | | · Trained persons allowed. | | · should wear protective clothing, masks. | | | | (3) facility design | | | | in aseptic rooms. | | 107 ascons. | | · Ais filteration system must be | | p-sovided. | | | | · Disingectants are used to clean | | area. | | a Building design | | 3 Building design | | · smooth, crack tree & easily | | · smooth, crack free & easily cleanable floors. | | | | · windows & doors = closed properly. | | | | (4) cleaning & Disinfection; | | • 10 • 10 • 10 • 0 | | time to time cleaning. good quality cleaning agents must be used. | | good quality cleaning agents must | | v 6e rused. | | www.remixeducation.in | ## Microbiological assay - A microbiological assay may be defined as quantitative or qualitative determination of any chemical compound from a simple or even complex material with use of microorganisms. - It is necessary to assay antimicrobial agents for determination of potency, for determining the pharmacokinetics of a drug in animals or man and for monitoring and controlling antimicrobial chemotherapy. - Many therapeutic agents which either inhibit the growth of microorganisms (antibiotics) or are essential for their growth (vitamins and amino acids) can be standardized by microbiological assay. - Microbiological assay are simple, inexpensive and convenient methods which are similar in accuracy as that of chemical method Activate Windows Go to PC settings to activate Windows. ## Microbiological assay of antibiotics - > Microbiological assay of antibiotics include following general procedures - Preparation of media Selection of microorganism Preparation of inoculum - > Microorganisms used in microbiological assay of antibiotics : Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis - The microbiological assay of antibiotics may be carried out by the following two methods: - i) Method A: Cup-plate or cylinder-plate method. - ii) Method B: Turbidimetric or tube assay method. Activate Windows Go to PC settings to activate Windows ## 1)Method A: Cup-plate or cylinder-plate method - > This method depends on the diffusion of an antibiotic from a vertical cavity or a cylinder, through the solidified agar layer in a Petri plate. - >The growth of test microorganisms is inhibited entirely in a circular area or zone around the cavity or cylinder containing a solution of the antibiotic. - A liquified assay medium (43 to 45°C) is inoculated by suspension of test microorganisms and the inoculated medium is poured immediately into sterile Petri plate by using an assay medium and then spread the test culture or microorganisms on the surface of plates (spread plate technique). - >Solutions of known concentrations of the standard preparation and the test antibiotic are prepared in appropriate solutions. - These solutions are added in sterile cavities or cylinders prepared in a solid medium. - > The plates are left standing for 1 to 2 hours at room temperature 4°C. - > All plates are then incubated for about 18 to 24 hours. - > The diameters or areas of the circular inhibition zones produced. - > The graph which relates zone diameter to the logarithm of the concentration of antibiotics is plotted and the unknown concentration of test antibiotics is calculated. Fig. 23.2: Zone of inhibition observed in plate (Assay of streptomycin) ## 2) Method B: Turbidimetric or tube assay method: - This method depends upon the growth of a microbial culture in a uniform solution of the antibiotic in a fluid medium that is favourable to its rapid growth in the absence of the antibiotic. - > Advantage: has a shorter incubation period for the growth of the test microorganisms. - > This method is not recommended for cloudy or turbid preparations. - > Five different concentrations of the standard solution are prepared by diluting the stock solution. - ➤ A median concentration is selected and the test sample of the antibiotic solution is adjusted by dilution to obtain approximately this concentration. - ➤ One ml of each concentration of the standard solution and of the sample solution are placed in each of the tubes in duplicate. Activate Windows Go to PC settings to activate Windows. - > To each-tube, 9 ml of nutrient medium is added. | It is the ability of these test microorganisms to synthesize the factor forms the basis of the microbiological assay of vitamins and amino according to the microbiological assay of vitamins and amino according to the second synthesize the factor forms the basis of the microbiological assay of vitamins and amino according to the second synthesize the factor forms the basis of the microbiological assay of vitamins and amino according to the second synthesize the factor forms the basis of the microbiological assay of vitamins and amino according to the second synthesize the factor forms the basis of the microbiological assay of vitamins and amino according to the second synthesize the factor forms the basis of the microbiological assay of vitamins and amino according to the second synthesize synthesize the second synthesize the thad synthesized the synthesize the synthesize the synthesize the s | | |--|---| | Microbiological assay of cyanocobalamin (Vitamin B12) may be perforable following methods: | rmed by the | | i) Titrimetric method. | | | ii) Turbidimetric method. | | | | | | | Activate Windows
Go to PC settings to activate Windows | | | | | | | | | | | | | www.remixeducation.in Scanned by CamScanner - > At the same time, three control tubes, one containing the inoculated culture medium, another identical with it but treated immediately with 0.5 ml of dilute formaldehyde solution (blank) and a third containing un-inoculated culture medium are prepared. - > All the tubes are placed in an incubator for 4 to 5 hours. - > After incubation add 0.5 ml of dilute formaldehyde solution to each tube. - > The growth of the test microorganisms is measured by determining the absorbance at about 530 nm using turbidometer. ### Microbiological assay of Vitamins - Vitamins are important growth factors needed for growth and multiplication of microbes. - They are very sensitive to small amounts of growth factors. - It is the ability of these microbes to synthesize the factor being assayed that forms the basis of the microbiological assay of vitamins and amino acids. - Examples of microbes used in microbiological assay of vitamins are Tetrahymena thermophila, Lactobacillus plantarum. - Vitamins are important growth factors needed for growth and multiplication of microorganisms. - They are very sensitive to small amounts of growth factors. Activate Windows Go to PC settings to activate Windows. ## 1) Titrimetric method: #### Procedure: - ➤ Clean ten test tubes and add 0.0 ml, 0.5 ml, 1.0 ml, 1.5 ml, 2 ml, 2.5 ml, 3 ml, 4 ml, 4.5 ml and 5 ml respectively of standard cyanocobalamin solution (0.01 0.04 ug/ml). - ➤ To each test tube add 5 ml Basal medium stock solution and adjust the final volume (10 ml) by using water. - > In the other four test tubes add 1.0 ml. 2.0 ml. 3.0 ml, 4.0 ml respectively of the test solution to be assayed. - To each test tube add 5 ml Basal medium stock solution and adjust the final volume (10 ml) by using water. Activate Windows Go to FC settings to activate Windows - > Sterilize all test tubes in autoclave at 121°C for 5 minutes. | After sterilization, cool all test tubes upto room temperature and inoculum (Lactobacillus leichmanii ATCC 7830). | ate with one drop of | |---|---| | Incubate the tubes for 64 to 72 hours at any chosen temperature within 37°C. | in the range of 30 to | | Titrate the contents of each tube with 0.05 N NaOH, using bromothymo (converts to green colour). | l blue as an indicator | | Plot the graph and determine the concentration as activity per ml interpolation of vitamin B12 activity. | of test solution by | | | Activate Windows
Go to PC settings to activate Windows | | | | | | | | | | | www.remixeducation.in | | Scanned by CamScanner | Table 23.8: Procedure for microbiological assay of Vitamin B12 (Titrimetric method) | | | | | |---|---|--|------------------------------------|--| | Tube number | Std. Cyanocobalamin solution
(0.01 to 0.04 µg/ml) (ml) | Basal medium
stock solution
(ml) | Volume of
sterile water
(ml) | | | 1 | 0.0 | 5 | 5.0 | | | , | 0.5 | 5 | 4.5 | | | , | 1.0 | 5 | 4.0 | | | , i | 1.5 | 5 | 3.5 | | | : | 2.0 | 5 | 3.0 | | | , | 2.5 | 5 | 2.5 | | | 6 | 1 533 | 5 | 2.0 | | | 7 | 3.0 | 5 | 1.0 | | | 8 | 4.0 | 5 | 0.5 | | | 9 | 4.5 | 5 | 0.0 | | | 10 | 5.0 | 5 | 4.0 | | | T | 1.0 (Test solution) | 5 | 3.0 | | | 2 | 2.0 (Test solution) | 5 | 2.0 | | | 3. | 3.0 (Test solution)
4.0 (Test solution) | 5 | 1.0 | | Activate Windows Go to PC settings to activate Windows ## 2) Turbidimetric method: #### Procedure: - Apparatus, reagents and procedures are same as titrimetric method but this test includes two more test tubes to which neither standard cyanocobalmin solution nor test solution, nor inoculum is added. - Incubate all test tubes at 30 to 37°C for 16 to 24 hours. - ➤ By using an 'un-inoculated blank tube' adjust the transmittance at 640 mu to100% in the photoelectric colorimeter. - Thoroughly mix the contents of each tube and record the transmittance reading. - Plot the graph and calculate the concentration of the test solution of cyanocobalmin. Go to PC settings to activate Windows # Assessment of new antibiotics and testing of anti-microbial activity of new substance: - Assessment of new antibiotics is done by figuring out their Minimum Inhibitory Concentration (MIC). - MIC is the lowest concentration of antimicrobial compound found to inhibit the growth of particular test microorganisms. - > MIC values are usually expressed in terms of μg/ml or units/ml. - > MIC of different anti-microbial compounds may be determined by - > 1) Liquid dilution method - > 2) Solid dilution method Activate Windows Go to PC settings to activate Windows ## 1) Liquid dilution method: - > It is also know as test tube method. - The method involves use of a series of test tubes which contain a double-strength medium and are labeled as shown in adjacent table. - The first test tube (un-inoculated) is used for checking the sterility of the medium. - ➤ In all other eleven test tubes Inoculum (m/o) is added to achieve a desired concentration (10⁵-10⁶ cells/ml) of microbes. | Tube number | Volume of double
strength medium (ml) | Volume of test
chemical (ml) | Volume of sterile
water (ml) | |------------------|--|---------------------------------|---------------------------------| | 0 (uninoculated) | 5 | 0.0 | 5 | | O' (control) | 5 | 0.0 | 5 | | _1 | 5 | 0.5 | 4.5 | | 2 | 5 | 1.0 | 4.0 | | 3 | 5 | 1.5 | 3,5 | | 4 | 5 | 2.0 | 3.0 | | 5 | 5 | 2.5 | 2.5 | | 6 | 5 | 3.0 | 2.0 | | 7 | 5 | 3.5 | 1.5 | | 8 | 5 | 4.0 | 1.0 | | | 5 | 4.5 | 0.5 | | 9 | 5 | 5.0 | 0.0 | - In all eleven test tubes, test chemical is added ranging from 0.5 to 5 ml. - The second test tube (control) is used to check the suitability of the test microbes and viability of the inoculum. - > The final volume (10 ml) in all test tubes is adjusted by using sterile water. - > The contents of all test tubes are properly mixed and incubated at 37°C for 2 to 3 days. - After incubation, all test tubes are examined for growth in the form of turbidity and results are recorded and minimum inhibitory concentration is calculated - It also necessary to conduct a preliminary experiment to determine the approximate range (test solution) which would be suitable for the test. Activate Windows Go to PC settings to activate Windows. ## 2) Solid dilution method: - In this method ,test chemical is fixed into molten agar and then poured into Petri plate . - After solidification, the inoculum is spread on the surface of agar medium. - ➤ All plates are incubated at 37°C for 2-3 days. - After incubation, all plates are observed for growth of inoculum and the minimum inhibitory concentration of the test chemicals is calculated - > Certain advantages of this method are : - > 1.Several microorganisms can be tested at the same time by use of multipoint inoculator. - 2.Contaminations are easily detected, because colony features on solid media are more distinctive than turbidity differences in fluid media Activate Windows Go to PC settings to activate Window